Skip to main content
Log in

Adoption of Vehicular Ad Hoc Networking Protocols by Networked Robots

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung J. H., Park S., Kim S.-L. (2010) Multi-robot path finding with wireless multihop communications. IEEE Communications Magazine 48(7): 126–132

    Article  Google Scholar 

  2. Sugiyama, H., Tsujioka, T. & Murata, M. (2009). Integrated operations of multi-robot rescue system with Ad Hoc networking. In Proceedings of wireless communications, vehicular technology, information theory and aerospace & electronic systems technology, Germany.

  3. Birk A., Schwertfeger S., Pathak K. (2009) A networking framework for teleoperation in safety, security and rescue robotics. IEEE Wireless Communications 16(1): 6–13

    Article  Google Scholar 

  4. Zhang, Y., Zeng, L., Li, Y. & Liu, Q. (2009). Multi-robot formation control using leader-follower for MANET. In Proceedings of the 2009 IEEE international conference on robotics and biomimetics, China.

  5. Royer E. M., Toh C.-K. (1999) A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications 6(2): 46–55

    Article  Google Scholar 

  6. Sanfeliu A., Hagita N., Saffiotti A. (2008) Network robot systems. Robotics and Autonomous Systems 56(10): 793–797

    Article  Google Scholar 

  7. Murphy R. R. (2004) Trial by fire—activities of the rescue robots at the World Trace Center from 11-21 September 2001. IEEE Robotics & automation magazine 11(3): 50–61

    Article  Google Scholar 

  8. Sweeney, J. D., Grupen, R. & Shenoy, P. (2004). Active QoS flow maintenance in controlled mobile networks. In Proceedings of the fourth international symposium on robotics and automation (ISRA), Mexico.

  9. Antonelli, G., Arrichiello, F., Chiaverini, S., Contrafatto, S. & Setola, R. (2007). Use of a robot platoon to implement mobile ad-hoc network in rescue scenario—preliminary experimental results. In Proceedings of the 2007 IEEE international workshop on safety, security and rescue robotics, Italy.

  10. Matsuno, F., Kamegawa, T., Sato, N., Hatayama, M., Mizumoto, H., Oh-hara, S., et al. (2010). Rescue robot systems—development of high-functionality multiple robot system and robust/scalable information infrastructure. In Proceedings of the 2010 IEEE workshop on advanced robotics and its social impacts (ARSO), South Korea.

  11. Correll, N., Bachrach, J., Vickery, D. & Rus, D. (2009). Ad-hoc wireless network coverage with networked robots that cannot localize. In Proceedings of the 2009 IEEE international conference on robotics and automation, Japan.

  12. Ollero, A., Alcazar, J., Cuesta, F., Lopez-Pichaco, F. & Nogales, C. (2003). Helicopter teleoperation for aerial monitoring in the COMETS multi-UAV system. In Proceedings of the 3rd LARP workshop on service, assistive and personal robots, Spain.

  13. Penders J., Alboul L., Witkowski U., NaghshA. Saez-Pons J., Herbrechtsmeier S. et al (2011) A robot swarm assisting a human fire-fighter. Advanced Robotics 25(1–2): 93–117

    Article  Google Scholar 

  14. Baber J., Kolodko J., Noel T., Parent M., Vlacic L. (2005) Cooperative autonomous driving—intelligent vehicles sharing city roads. IEEE Robotics & Automation Magazine 12(1): 44–49

    Article  Google Scholar 

  15. Nagel, R., Eichler, S. & Eberspcher, J. (2007). Intelligent wireless communication for future autonomous and cognitive automobiles. In Proceedings of the 2007 intelligent vehicles symposium, Turkey.

  16. Xiong N., Vasilakos A. V., Yang L. T., Pedrycz W., Zhang Y., Li Y. (2010) A resilient and scalable flocking scheme in autonomous vehicular networks. Mobile Networks and Applications 15(1): 126–136

    Article  Google Scholar 

  17. Milanes V., Alonso J., Bouraoui L., Ploeg J. (2011) Cooperative maneuvering in close environments among cybercars and dual-mode cars. IEEE Transactions on Intelligent Transportation Systems 12(1): 15–24

    Article  Google Scholar 

  18. Sanders, G. (2004). Boeing technical experts check the feasibility of personal air vehicles. Boeing Frontiers. http://www.boeing.com/news/frontiers/archive/2004/july/ts_sf14.html. Accessed 22 September 2011.

  19. Thrun S., Thayer S., Whittaker W., Baker C., Burgard W., Ferguson D. et al (2004) Autonomous exploration and mapping of abandoned mines—software architecture of an autonomous robotic system. IEEE Robotics & Automation Magazine 11(4): 79–91

    Article  Google Scholar 

  20. Murphy R. R., Kravitz J., Stover S. L., Shoureshi R. (2009) Mobile robots in mine rescue and recovery. IEEE Robotics & Automation Magazine 16(2): 91–103

    Article  Google Scholar 

  21. Weiss M. D., Peak J., Schwengler T. (2008) A statistical radio range model for a robot MANET in a subterranean mine. IEEE Transactions on Vehicular Technology 57(5): 2658–2666

    Article  Google Scholar 

  22. Parker L. E. (1998) ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2): 220–240

    Article  Google Scholar 

  23. Ibach P., Milanovic N., Richlilng J., Stantchev V., Wiesner A., Malek M. (2005) CERO: CE robots community. IEEE Proceedings Software 152(5): 210–214

    Article  Google Scholar 

  24. Kovacs, T., Pasztor, A. & Istenes, Z. (2009). Connectivity in a wireless network of mobile robots doing a searching and collecting task. In Proceedings of the 5th international symposium on applied computational intelligence and informatics, Romania.

  25. Steels, L. (1990). Cooperation between distributed agents through self-organization. In Proceedings of the first European workshop on modeling autonomous agents in a multi-agent world, UK.

  26. Stilwell, D. & Bay, J. (1993). Towards the development of a material transport system using swarms of ant-like robots. In Proceedings of the IEEE international conference on robotics and automation, USA.

  27. Erickson J. K. (2006) Living the dream—an overview of the mars exploration project. IEEE Robotics & automation magazine 13(2): 12–18

    Article  MathSciNet  Google Scholar 

  28. Rooker M. N., Birk A. (2007) Multi-robot exploration under the constraints of wireless networking. Control Engineering Practice 15(4): 435–445

    Article  Google Scholar 

  29. Toung, J., Gilstrap, R. & Freeman, K. (2006). A split implementation of the dynamic source routing protocol for lunar/planetary surface communications. In Proceedings of the 2006 IEEE aerospace conference, USA.

  30. Bevilacqua R., Hall J. S., Horning J., Romano M. (2009) Ad hoc wireless networking and shared computation for autonomous multirobot systems. Journal of Aerospace Computing Information and Communication 6(5): 328–353

    Google Scholar 

  31. Pompili D., Akyildiz I. F. (2009) Overview of networking protocols for underwater wireless communications. IEEE Communications Magazine 47(1): 97–102

    Article  Google Scholar 

  32. Vasilescu I., Detweiler C., Doniec M., Gurdan D., Sosnowski S., Stumpf J. et al (2010) AMOUR V: A hovering energy efficient underwater robot capable of dynamic payloads. International Journal of Robotics Research 29(5): 547–570

    Article  Google Scholar 

  33. Benton, C., Kenney, J., Nitzel, R., Blidberg, D. R., Chappell, S. & Mupparapu, S. (2004). Autonomous undersea systems network (ausnet)-protocols to support ad-hoc AUV communications. In Proceedings of AUV2004: A workshop on multiple autonomous underwater vehicle operations, USA.

  34. Clark J., Fierro R. (2007) Mobile robotic sensors for perimeter detection and tracking. ISA Transactions 46(1): 3–13

    Article  Google Scholar 

  35. Kingston D., Beard R. W., Holt R. S. (2008) Decentralized perimeter surveillance using a team of UAVs. IEEE Transactions on Robotics 24(6): 1394–1404

    Article  Google Scholar 

  36. Calkins D. (2011) An overview of robogames. IEEE Robotics & Automation Magazine 18(1): 14–15

    Article  Google Scholar 

  37. Behnke S., Stckler J. (2008) Hierarchical reactive control for humanoid soccer robots. International Journal of Humanoid Robotics 5(3): 375–396

    Article  Google Scholar 

  38. Weitzenfeld, A., Martinez-Gomez, L., Francois, J. P., Levin-Pick, A., Obraczka, K. & Boice, J. (2006). Multi-robot systems: Extending Robocup small-size architecture with local vision and ad-hoc networking. In Proceedings of the 2006 IEEE 3rd latin American robotics symposium, Chile.

  39. Fiene J. (2010) The robockey cup—a look at mechatronics education in 2009. IEEE Robotics & Automation Magazine 17(3): 78–82

    Article  Google Scholar 

  40. Ben-Asher Y., Feldman S., Gurfil P., Feldman M. (2008) Distributed decision and control for cooperative UAVs using ad hoc communication. IEEE Transactions on Control Systems Technology 16(3): 511–516

    Article  Google Scholar 

  41. Luu, B. B., O’Brien, B. J., Baran, D. G. & Hardy, R. L. (2007). A soldier-robot ad hoc network. In Proceedings of the fifth annual IEEE international conference on pervasive computing and communications workshop (PerComW), USA.

  42. Nguyen, H. G., Pezeshkian, N., Raymond, M., Gupta, A. & Spector, J. M. (2003). Autonomous communication relays for tactical robots. In Proceedings of the 11th international conference on advanced robotics, Portugal.

  43. Hsieh M. A., Cowley A., Keller J. F., Chaimowicz L., Grocholsky V. K., Kumar V. et al (2007) Adaptive teams of autonomous aerial and ground robots for situational awareness. Journal of Field Robotics 24(11–12): 991–1014

    Article  Google Scholar 

  44. Sariel S., Balch T., Erdogan N. (2008) Naval mine countermeasure missions—a distributed, incremental multirobot task selection scheme. IEEE Robotics & Automation Magazine 15(1): 45–52

    Article  Google Scholar 

  45. Lindemuth M., Murphy R., Steimle E., Armitage W., Dreger K., Elliot T. et al (2011) Sea robot-assisted inspection. IEEE Robotics & Automation Magazine 18(2): 96–107

    Article  Google Scholar 

  46. Pezeshkian, N., Nguyen, H. G. & Burmeister, A. (2007). Unmanned ground vehicle radio relay deployment system for non-line-of-sight operations. In Proceedings of the 13th IASTED international conference on robotics and applications, Germany.

  47. Nguyen, H. G., Kogut, G., Barua, R., Burmeister, A., Pezeshkian, N., Powell, D., et al. (2004). A Segway RMP-based robotic transport system. In Proceedings of conference on mobile robots XVII, USA.

  48. Jiang J.-R., Lai Y.-L., Deng F.-C. (2011) Mobile robot coordination and navigation with directional antennas in positionless wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing 7(4): 272–280

    Article  Google Scholar 

  49. Garawi S., Istepanian R. S. H., Abu-Rgheff M. A. (2006) 3G wireless communications for mobile robotic tele-ultrasonography systems. IEEE Communications Magazine 44(4): 91–96

    Article  Google Scholar 

  50. Takeuchi R., Harada H., Masuda K., Ota G., Yokoi M., Teramura N. et al (2008) Field testing of a remote controlled robotic tele-echo system in an ambulance using broadband mobile communication technology. Journal of Medical Systems 32(3): 235–242

    Article  Google Scholar 

  51. Petelin J. B., Nelson M. E., Goodman J. (2007) Deployment and early experience with remote-presence patient care in a community hospital. Surgical Endoscopy and Other Interventional Techniques 21(1): 53–56

    Article  Google Scholar 

  52. Harnett B. M., Doarn C. R., Rosen J., Hannaford B., Broderick T. J. (2008) Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment. Telemedicine Journal and E-health 14(6): 539–544

    Article  Google Scholar 

  53. Wang Z., Liu L., Zhou M. (2005) Protocols and applications of ad-hoc robot wireless communication networks: An overview. International Journal of Intelligent Control and Systems 10(4): 296–303

    Google Scholar 

  54. Perkins, C. & Belding-Royer, E. (2003). RFC 3561: Ad hoc on-demand distance vector (AODV) routing. Internet engineering task force.

  55. Pohjola M., Nethi S., Jantti R. (2009) Wireless control of a multihop mobile robot squad. IEE Wireless Communications 16(1): 14–20

    Article  Google Scholar 

  56. Kudelski, M., Gadomska-Kudelska, M. & Pacut, A. (2008). Geographical cells routing in ad-hoc networks of mobile robots. In Proceedings of the 14th IEEE mediterranean electrotechnical conference (MELECON), France.

  57. Zeiger, F., Kraemer, N. & Schilling, K. (2008). Commanding mobile robots via wireless ad-hoc networks—a comparison of four ad-hoc routing protocol implementations. In Proceedings of the 2008 IEEE international conference on robotics and automation, USA.

  58. Johnson, D., Hu, Y. & Maltz, D. (2007). RFC 4728: The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. Internet engineering task force.

  59. Clausen, T. & Jacquet, T. (2003). RFC 3626: Optimized link state routing protocol (OLSR). Internet engineering task force.

  60. Zeiger F., Kraemer N., Sauer M., Schilling K. (2009) Mobile robot teleoperation via wireless multihop networks - parameter tuning of protocols and real world application scenarios. Lecture Notes in Electrical Engineering 37(3): 139–152

    Article  Google Scholar 

  61. Das S., Hu Y. C., Lee C. S. G., Lu Y.-H. (2007) Mobility-aware ad hoc routing protocols for networking mobile robot teams. Journal of Communications and Networks 9(3): 296–311

    Google Scholar 

  62. Tiderko A., Bachran T., Hoeller F., Schulz D. (2008) Rose—a framework for multicast communication via unreliable networks in multi-robot systems. Robotics and Autonomous Systems 56(12): 1017–1026

    Article  Google Scholar 

  63. Pezeshkian, N., Nguyen, H.G., Burmeister, A., Holz, K. & Hart, A. (2010). Automatic payload deployment system. In Proceedings of conference on unmanned systems technology XII, USA.

  64. Dixon C., Frew E. W. (2009) Maintaining optimal communication chains in robotic sensor networks using mobility control. Mobile Networks & Applications 14(3): 281–291

    Article  Google Scholar 

  65. Basu P., Redi J. (2004) movement control algorithms for realization of fault-tolerant ad hoc robot networks. IEEE Network 18(4): 36–44

    Article  Google Scholar 

  66. Das S., Liu H., Nayak A., Stojmenovic I. (2009) A localized algorithm for bi-connectivity of connected mobile robots. Telecommunications Systems 40(3–4): 129–140

    Article  Google Scholar 

  67. Liu H., Chu X., Leung Y.-W., Du R. (2010) Simple movement control algorithm for bi-connectivity in robotic sensor networks. IEEE Journal on Selected Areas in Communications 28(7): 994–1005

    Article  Google Scholar 

  68. Ulam, P. & Arkin, R. C. (2004). When good comms go bad: Communications recovery for multi-robot teams. In Proceedings of the 2004 IEEE international conference on robotics and automation, USA.

  69. Lee D.-J., Mark R. (2010) Decentralized control of unmanned aerial robots for wireless airborne communication networks. International Journal of Advanced Robotic Systems 7(3): 191–200

    Google Scholar 

  70. Ben-Tzvi P., Goldenberg A. A., Zu J. W. (2010) Articulated hybrid mobile robot mechanism with compounded mobility and manipulation and on-board wireless sensor/actuator control interfaces. Mechatronics 20(6): 627–639

    Article  Google Scholar 

  71. Zeiger, F., Kraemer, N., Sauer, M. & Schilling, K. (2008). Challenges in realizing ad-hoc networks based on wireless LAN with mobile robots. In Proceedings of the 6th international symposium on modelling and optimization in mobile, ad hoc and wireless networks (WiOPT), Germany.

  72. Car 2 Car Communication Consortium (2007). C2C-CC Manifesto. http://www.car-to-car.org. Accessed 27 September 2011.

  73. European Telecommunications Standards Institute. (2009). TR 102 638, intelligent transport systems, vehicular communications, basic set of applications, definitions. http://www.etsi.org. Accessed 27 September 2011.

  74. Blum J. J., Eskandarian A., Hoffman L. J. (2004) Challenges of intervehicle ad hoc networks. IEEE Transactions on Intelligent Transportation Systems 5(4): 347–351

    Article  Google Scholar 

  75. Maihofer C. (2004) A survey of geocast routing protocols. IEEE Communications Surveys and Tutorials 6(2): 32–42

    Article  Google Scholar 

  76. Li F., Wang Y. (2007) Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine 2(2): 12–22

    Article  Google Scholar 

  77. Hartenstein H., Laberteaux K. P. (2008) A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine 46(4): 164–171

    Article  Google Scholar 

  78. Schoch E., Kargl F., Weber M., Leinmuller T. (2008) Communication patterns in VANETs. IEEE Communications Magazine 46(11): 119–125

    Article  Google Scholar 

  79. Bernsen J., Manivannan D. (2009) Unicast routing protocols for vehicular ad hoc networks: A critical comparison and classification. Pervasive and Mobile Computing 5(1): 1–18

    Article  Google Scholar 

  80. Hrizi, F. & Filali, F. (2009). On congestion-aware broadcasting in V2X networks. In Proceedings of the international conference on ultra modern telecommunications and workshops, Rusia.

  81. Lin Y.-W., Chen Y.-S., Lee S.-L. (2010) Routing protocols in vehicular ad hoc networks: A survey and future perspectives. Journal of Information Science and Engineering 26(3): 913–932

    Google Scholar 

  82. Chen W., Guha R. K., Kwon T. J., Lee J., Hsu Y.-Y. (2011) A survey and challenges in routing and data dissemination in vehicular ad hoc networks. Wireless Communication and Mobile Computing 11(7): 787–795

    Article  Google Scholar 

  83. Huston, G. IPv4 address report. http://www.potaroo.net/tools/ipv4/index.html. Accessed 27 September 2011.

  84. Jackson J. (2007) Microsoft robotics studio: A technical introduction-standardizing robotic coordination and control. IEEE Robotics & Automation Magazine 14(4): 82–87

    Article  Google Scholar 

  85. Fink, J., Collins, T., Kumar, V., Mostofi, Y., Baras, J., et al. (2009). A simulation environment for modeling and development of algorithms for ensembles of mobile microsystems. In Proceedings of the SPIE conference on micro-and nanotechnology sensors, systems, and applications, USA.

  86. Chung, T., Cremean, L., Dunbar, W. B., Jin, Z., Klavins, E., Moore, D., et al. (2002). A platform for cooperative and coordinated control of multiple vehicles. In Proceedings of the 3rd conference on cooperative control and optimization, USA.

  87. Michael N., Fink J., Kumar V. (2008) Experimental testbed for large multirobot teams—verification and validation. IEEE Robotics and Automation Magazine 15(1): 53–61

    Article  Google Scholar 

  88. Wilson, C. G. & Roppel, T. (2009). Low-cost wireless mobile ad-hoc network robotic testbed. In Proceedings of the 5th international conference on testbeds and research infrastructures for the development of networks and communities (Tridentcom), USA.

  89. Piorkowski M., Raya M., Lezama Lugo A., Papadimitratos P., Grossglauser M., Hubaux J.-P. (2008) TraNS: Realistic joint traffic and network simulator for VANETs. ACM SIGMOBILE Mobile Computing and Communications Review 12(1): 31–33

    Article  Google Scholar 

  90. Liu B., Khorashadi B., Du H., Ghosal D., Chuah C.-N., Zhang M. (2009) VGSim: An integrated networking and microscopic vehicular mobility simulation platform. IEEE Communications Magazine 47(5): 131–141

    Google Scholar 

  91. Maneros, J., Rondinone, M., Gonzalez, A., Bauza, R. & Krajzewicz, D. (2009). iTETRIS platform architecture for the intergration of cooperative traffic and wireless simulations. In Proceedings of the 9th international conference on ITS telecommunications, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Vandenberghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenberghe, W., Moerman, I. & Demeester, P. Adoption of Vehicular Ad Hoc Networking Protocols by Networked Robots. Wireless Pers Commun 64, 489–522 (2012). https://doi.org/10.1007/s11277-012-0598-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0598-2

Keywords

Navigation